Improved Fréchet Bounds and Model-free Pricing of Multi-asset Options
نویسندگان
چکیده
Improved bounds on the copula of a bivariate random vector are computed when partial information is available, such as the values of the copula on a given subset of [0, 1]2, or the value of a functional of the copula, monotone with respect to the concordance order. These results are then used to compute model-free bounds on the prices of two-asset options which make use of extra information about the dependence structure, such as the price of another two-asset option.
منابع مشابه
The Integration of Multi-Factor Model of Capital Asset Pricing and Penalty Function for Stock Return Evaluation
One of the main concerns of investors is the evaluation of the return on investment, which is conducted using various models such as the CAPM (single-factor model), Fama-French three/five-factor models, and Roy and Shijin’s six-factor model and other models known as multi-factor models. Despite the widespread use of these models, their major drawbacks include sensitivity to unexpected changes, ...
متن کاملرویکرد روش مونت کارلوی کمترین مربعات برای قیمت گذاری اختیار فروش آمریکایی چند دارایی تحت مدل هستون-هال وایت
In this paper, we study the problem of pricing multi-asset American-style options in the Heston-Hull-White model. It is widely recognized that our intended model compared to the original Heston model, due to its stochastic interest rate and stochastic volatility, is more compatible with the realistic of the market. We demonstrate the efficiency and accuracy of the our proposed method by verifyi...
متن کاملValuation of installment option by penalty method
In this paper, installment options on the underlying asset which evolves according to Black-Scholes model and pays constant dividend to its owner will be considered. Applying arbitrage pricing theory, the non-homogeneous parabolic partial differential equation governing the value of installment option is derived. Then, penalty method is used to value the European continuous installment call opt...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملApplication of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کامل